数模转换芯片

数模转换芯片

前往设置里面 辅助功能 进行接入设置就行了

数模转换芯片A/D位数越多

AD转换是把连续量的模拟量转换为不连续的数字量,数字量的位数直接表达了取样时的精度,严格说只能是接近实际数的一个近似数,当然是位数越多精度越高,好比一把普通尺和一把千分尺,你说哪个精度高?两者的计算关系(应该是换算关系)就是把通过传感器测量所得的实数(电压、电流、角度、位移、温度等等的标量)变换为便于计算机处理的二进制数。

常用数模转换芯片

TV5725

TrueView 5725特征模拟输入格式 -最大三通道模拟输入 - RGB /YPbPr输入 - 模拟输入范围:为0.5V - 1.0V(p-p) -可编程增益/偏移控制 - DC或AC耦合输入 -内部同步分离器支持SOG/SOY - SXGA(1280 × 1024 @75Hz)在135MHz -高达1080的HDTV - 支持Macrovision的输入三重8位ADC -最大的模拟采样率可达162MSPS 时钟恢复电路 -可编程相位调整细胞 - HSYNC频率范围从15KHz到110KHz 数字输入格式 -24位的RGB / YUV转换输入 -8/16bit YUV转换输入 - NTSC / PAL输入 - 480p的,576p输入 - VGA/SVGA/XVGA输入 -支持720p,1080i,1080p的高清输入 -支持DVI接口输出格式 - 480p,576p,720p,1080i,1080p -高达SXGA图形输出格式 -隔行双倍扫描 -50 - 75Hz最佳扫描率转换 - 15 - 80kHz的水平频率 - 16位数字YPbPr输出同步 - 24位的YPbPr / RGB数字输出同步 De-interlacer - 支持高清1080i -标清NTSC / PAL 直边矫正反交错 -运动检测 -边缘检测 -模式检测 -噪声检测 - 3:2 / 2:2下拉检测内存控制器 -支持内存2-8兆字节 -16/32bit data access 视频增强 -黑电平扩展(BLE) -白电平扩展(WLE) - 颜色过渡改善(DCTI) -动态范围扩展 -亮度,饱和度,对比度,色调 -动态二维调峰 -2D coring -3D降噪 - 扫描速度调制(SVM) -二维非线性缩放 -原色增强 -增强皮肤色调 -蓝色拉伸 PIP -支持板级画中画使用和外部视频解码器/香港艺术发展局 -提供时间和PIP为主要渠道同步 -内部覆盖主/画中画 -只有200万外部存储器需要画中画频道 OSD -简单的OSD发生器,以支持分量视频输入主机接口和I / O - e两线的I2C接口 -GPIO 四路10位数模转换器封装技术 - 160引脚QFP - 0.18微米,3.3 V/ 1.8V供电

数模转换器

A/D转换器称为模数转换器,可以将模拟信号转换成数字信号的电路。

A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D转换一般要经过取样、保持、量化及编码4个过程。

在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。

数模转换器,又称D/A转换器,简称DAC。

一种将二进制数字量形式的离散信号转换成以标准量(或参考量)为基准的模拟量的转换器,作用是把数字量转变成模拟的器件。

扩展资料: 模数转换的方法从转换原理来分可分为直接法和间接法两大类: 1、直接法是直接将电压转换成数字量。

它用数模网络输出的一套基准电压,从高位起逐位与被测电压反复比较,直到二者达到或接近平衡。

直接逐位比较型转换器是一种高速的数模转换电路,转换精度很高,但对干扰的抑制能力较差,常用提高数据放大器性能的方法来弥补。

它在计算机接口电路中用得最普遍。

2、间接法不将电压直接转换成数字,而是首先转换成某一中间量,再由中间量转换成数字。

常用的有电压-时间间隔(V/T)型和电压-频率(V/F)型两种,其中电压-时间间隔型中的双斜率法(又称双积分法)用得较为普遍。

参考资料来源:百度百科—A/D转换器 参考资料来源:百度百科—D/A转换器

音频数模转换芯片

音频编码器是将不同格式的音频文件进行重新编码,已达到使用需求,音频数模转换是讲音频数字和模拟之间互相转换,这两个是不同的概念,应用在不同的方面。

数模转换芯片DAC0832的应用

采用DAC0832实现D/A转换。

DAC0832引脚功能说明:DI0~DI7:数据输入线,TTL电平。

ILE:数据锁存允许控制信号输入线,高电平有效。

CS:片选信号输入线,低电平有效。

WR1:为输入寄存器的写选通信号。

XFER:数据传送控制信号输入线,低电平有效。

WR2:为DAC寄存器写选通输入线。

Iout1:电流输出线。

当输入全为1时Iout1最大。

Iout2: 电流输出线。

其值与Iout1之和为一常数。

Rfb:反馈信号输入线,芯片内部有反馈电阻.Vcc:电源输入线 (+5v~+15v)Vref:基准电压输入线 (-10v~+10v)AGND:模拟地,摸拟信号和基准电源的参考地.DGND:数字地,两种地线在基准电源处共地比较好. D/A转换器DAC0832DAC0832是采用CMOS工艺制成的单片直流输出型8位数/模转换器。

如图4-82所示,它由倒T型R-2R电阻网络、模拟开关、运算放大器和参考电压VREF四大部分组成。

由上式可见,输出的模拟量与输入的数字量() 成正比,这就实现了从数字量到模拟量的转换。

一个8位D/A转换器有8个输入端(其中每个输入端是8位二进制数的一位),有一个模拟输出端。

输入可有28=256个不同的二进制组态,输出为256个电压之一,即输出电压不是整个电压范围内任意值,而只能是256个可能值。

图4-83是DAC0832的逻辑框图和引脚排列。

数/模(D/A)转换器D0~D7:数字信号输入端。

ILE:输入寄存器允许,高电平有效。

CS:片选信号,低电平有效。

WR1:写信号1,低电平有效。

XFER:传送控制信号,低电平有效。

WR2:写信号2,低电平有效。

IOUT1、IOUT2:DAC电流输出端。

Rfb:是集成在片内的外接运放的反馈电阻。

Vref:基准电压(-10~10V)。

Vcc:是源电压(+5~+15V)。

AGND:模拟地 NGND:数字地,可与AGND接在一起使用。

DAC0832输出的是电流,一般要求输出是电压,所以还必须经过一个外接的运算放大器转换成电压。

D/A转换器是接收数字量,输出一个与数字量相对应的电流或电压信号的模拟量接口。

D/A转换器被广泛用于计算机函数发生器、计算机图形显示以及与A/D转换器相配合的控制系统等。

D/A转换原理:数字量的值是由每一位的数字权叠加而得的。

D/A转换器品种繁多,有权电阻DAC、变形权电阻DAC、T型电阻DAC、电容型DAC和权电流DAC等。

为了掌握数/模转换原理,必须先了解运算放大器和电阻译码网络的工作原理和特点。

数模转换芯片的工作原理

AD:模数转换,将模拟信号变成数字信号,便于数字设备处理。

DA:数模转换,将数字信号转换为模拟信号与外部世界接口。

具体可以看看下面的资料,了解一下工作原理:

1. AD转换器的分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。

其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。

初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。

其电路规模属于中等。

其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。

由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。

还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。

这类AD速度比逐次比较型高,电路规模比并行型小。

4)∑-Δ(Sigma?/FONT>delta)调制型(如AD7705)

∑-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。

原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。

电路的数字部分基本上容易单片化,因此容易做到高分辨率。

主要用于音频和测量。

5)电容阵列逐次比较型

电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。

一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。

如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。

最近的逐次比较型AD转换器大多为电容阵列式的。

6)压频变换型(如AD650)

压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。

其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。

从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。

其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。

2. AD转换器的主要技术指标

1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。

3. DA转换器

DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。

大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。

按数字输入值切换开关,产生比例于输入的电流(或电压)。

此外,也有为了改善精度而把恒流源放入器件内部的。

一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器,如果经电流椀缪棺�缓笫涑觯�蛭�缪故涑鲂?/FONT>DA转换器。

此外,电压开关型电路为直接输出电压型DA转换器。

1)电压输出型(如TLC5620)

电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。

直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。

2)电流输出型(如THS5661A)

电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。

用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。

此外,大部分CMOS DA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。

当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使响应变慢。

此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。

3)乘算型(如AD7533)

DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。

乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。

4)一位DA转换器

一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。

4. DA转换器的主要技术指标:

1)分辩率(Resolution) 指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。

2)建立时间(Setting Time) 是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。

DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。

一般地,电流输出DA建立时间较短,电压输出DA则较长。

其他指标还有线性度(Linearity),转换精度,温度系数/漂移

数模转换芯片dac0832

DAC0832(数模转换器的一种)用作过程控制计算机系统的输出通道,与执行器相连,实现对生产过程的自动控制。

数模转换器电路还用再利用反馈技术的模数转换器设计中。

DAC0832的作用主要是把连续的模拟信号转变为离散的数字信号。

以其价格低廉、结构简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。

D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。

扩展资料: DAC0832的特性: 1、分辨率:分辨率它反映了输出模拟电压的最小变化值。

定义为输出满刻度电压与2n的比值,其中n为DAC的位数。

分辨率与输入数字量的位数有确定的关系。

对于5V的满量程,采用8位的DAC时,分辨率为5V/256=19.5mV;当采用10位的DAC时,分辨率则为5V/1024=4.88mV。

显然,位数越多分辨率就越高。

2、建立时间:建立时间是描述DAC转换速度快慢的参数。

定义为从输入数字量变化到输出达到终值误差±1/2 LSB(最低有效位)所需的时间。

3、接口形式:接口形式是DAC输入/输出特性之一。

包括输入数字量的形式:十六进制或BCD,输入是否带有锁存器等。

参考资料来源:百度百科-DAC0832 参考资料来源:百度百科-数模转换器

数模转换芯片作用

芯片为半导体元件产品的统称(在集成电路上的载体),集成电路英语:integrated circuit,缩写作 IC;或称微电路(microcircuit)、微芯片(microchip)、晶片/芯片(chip)在电子学中是一种将电路(主要包括半导体设备,也包括被动组件等)小型化的方式,并时常制造在半导体晶圆表面上。

芯片作用:可以控制计算机到手机到数字微波炉的一切。

虽然设计开发一个复杂集成电路的成本非常高,但是当分散到通常以百万计的产品上,每个集成电路的成本最小化。

集成电路的性能很高,因为小尺寸带来短路径,使得低功率逻辑电路可以在快速开关速度应用。

扩展资料: 芯片举例:中国芯-龙芯系列 龙芯系列通用处理器是我国自主研制的通用处理器,对维护我国的信息安全具有重要的意义。

此前,我国使用的通用处理器绝大多数是美国英特尔公司和AMD公司生产的。

由于处理器中包含有数千万个至数亿个电子元件,每个电子元件在处理器中具有什么功能、起着什么作用很难说清楚,也就是说处理器的技术透明度非常低,在技术上; 国外公司完全有可能在出口到我国的处理器中植入可用特定手段激活的破坏性或间谍性指令,一旦出现非常情况,这些指令就有可能被激活,进而会使我国陷入被动之中。

龙芯系列通用处理器的研制成功将解决上述问题 参考资料来源:百度百科-中国芯 参考资料来源:百度百科-芯片

数模转换芯片需要写烧写程序吗

电源芯片和程序没关系。

MCU(微控制器)才需要烧录程序。

执行时间 2.0951900482178 seconds